DataFrame.
checkpoint
Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with SparkContext.setCheckpointDir().
DataFrame
SparkContext.setCheckpointDir()
New in version 2.1.0.
Whether to checkpoint this DataFrame immediately
Notes
This API is experimental.