pyspark.ml.clustering.
GaussianMixtureModel
Model fitted by GaussianMixture.
New in version 2.0.0.
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getAggregationDepth()
getAggregationDepth
Gets the value of aggregationDepth or its default value.
getFeaturesCol()
getFeaturesCol
Gets the value of featuresCol or its default value.
getK()
getK
Gets the value of k
getMaxIter()
getMaxIter
Gets the value of maxIter or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
getProbabilityCol()
getProbabilityCol
Gets the value of probabilityCol or its default value.
getSeed()
getSeed
Gets the value of seed or its default value.
getTol()
getTol
Gets the value of tol or its default value.
getWeightCol()
getWeightCol
Gets the value of weightCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
predict(value)
predict
Predict label for the given features.
predictProbability(value)
predictProbability
Predict probability for the given features.
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setFeaturesCol(value)
setFeaturesCol
Sets the value of featuresCol.
featuresCol
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
setProbabilityCol(value)
setProbabilityCol
Sets the value of probabilityCol.
probabilityCol
transform(dataset[, params])
transform
Transforms the input dataset with optional parameters.
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
aggregationDepth
gaussians
Array of MultivariateGaussian where gaussians[i] represents the Multivariate Gaussian (Normal) Distribution for Gaussian i
MultivariateGaussian
gaussiansDF
Retrieve Gaussian distributions as a DataFrame.
hasSummary
Indicates whether a training summary exists for this model instance.
k
maxIter
params
Returns all params ordered by name.
seed
summary
Gets summary (e.g.
tol
weightCol
weights
Weight for each Gaussian distribution in the mixture.
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 3.0.0.
New in version 1.3.0.
pyspark.sql.DataFrame
input dataset
an optional param map that overrides embedded params.
transformed dataset
Attributes Documentation
Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. The DataFrame has two columns: mean (Vector) and cov (Matrix).
New in version 2.1.0.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param
Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists.
Weight for each Gaussian distribution in the mixture. This is a multinomial probability distribution over the k Gaussians, where weights[i] is the weight for Gaussian i, and weights sum to 1.